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Abstract. Explicit results for particular coupling coefficients for the most degenerate
representations of SO{n) are given. The isoscalar factors which allow a recursive
calculation of arbitrary coupling coefficients from those of SO(3) are derived. 6j- and
9;j-symbols for most degenerate representations are also briefly discussed.

1. Introduction and motivation

Coupling coefficients for the orthogonal groups SO(n) are of great importance and
interest in physics. In atomic and nuclear physics these coupling coefficients are
used extensively. Another area of application is statistical physics. For example,
a high-temperature expansion for the classical n-vector model can be performed to
higher orders only if the coupling coefficients for the most degenerate representations
of 8O(n) are explicitly known. The idea of a group theoretical approach to the
evaluation of classical statistical models has been outlined by Joyce [1] for the classical
Heisenberg model (n = 3). A generalization to arbitrary n is only possible if the
corresponding 3;j-symbols are explicitly available. This has been the motivation for us
to investigate 3j-symbols for the most degenerate representations of SO(n) keeping
n arbitrary.

There has been substantial progress in the Clebsch-Gordan decomposition of
products of irreducible representations for SO(n), SU(n) and Sp(2n) (see, for
example, [2]). However, explicit expressions -for the associated Clebsch-Gordan
coefficients besides the well-known ones of SU(2) ~ SO(3) [3,4] are a rarity.
For some explicit results on SU(3) see the excellent text book by Cornwell [2).
Recent progress on SO(n) coupling coefficients, in particular on isoscalars, is due to
AliSauskas [5, 6). :

In this paper, we calculate 3j-symbols for the most degenerate representation
of SO(n) using the explicit representation functions [7). In section 2 we recall
- some basic facts about these representations. Section 3 defines the 3j-symbols and
presents explicit closed form expressions for particular cases. These are the first non-
trivial contributions to a high-temperature expansion of the n-vector model mentioned
above. After establishing the connection between the 3j-symbols and Clebsch-Gordan
coeflicients we present an iteration method for calculating arbitrary 3;-symbols using

t E-mail: junker@faupt101.physik.uni-erlangen.de.
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the isoscalar factors. An explicit expression for these isoscalars is obtained. Finally,
in section 6 we briefly discuss integral representations of 6;j- and 9;-symbols. These
integrals appear, for example, in 3-loop and 4-loop contributions to the partition
function of n-vector models.

2. The most degenerate representations of SO(n)

The special orthogonal group SO(n) is the set of all linear transformations in the
n-dimensional Euclidean space R™

z. = gx; z;,z; ER® geSO(n) i=1,2 (1)

which preserves the Euclidean norm |2,| = |2}| and the scalar product z,-z, = z}-z}.
That is, SO(n) acts transitively on the unit sphere S™~1 in R®. Here g is an
orthogonal n x n matrix which can be built up by n(n —1)/2 simple rotations g, (6)
in the planes (2, ,4)

T ) - cos sind zy @)
a:;H_l -—Sill9 cos & $k+l )
Any rotation matrix g can be presented in the form g = ¢g(»~D... gD where

g™ = g,(67) -9, (8]) [7}
A finite-dimensional irreducible representation of SO(n) is uniquely determined
by its highest weight [8]

[”1!#’2?' s gl 3
with

By2 By 2 2 B 2 1] for n =2k @

B ZHy 2 2 pp 12820 for n = 2k 4 1.

The components y; are either simultaneously integers (tensorial representations) or
half-integers (spinorial representations).

In this paper we consider only unitary irreducible representation of SO(n) in
the Hilbert space H = L?(S™~!) of square integrable functions on the unit sphere
$m=1. Transformations of SO(n) are defined by left translations

D(g)f(z) = f(g™'=) g € S0(n). (5)

D(g) is called the quasi-regular representation [7].

The Hilbert space H can be decomposed into an orthogonal sum of subspaces
H* of homogeneous polynomials of degree £ in n variables. Each invariant subspace
H* carries an irreducible representation of SO(n) with highest weight [8]

[€,0,...,0] £=0,1,2,3,.... (6)

Such a representation which will be denoted by D* is called the representation of class
one or most degenerate representation of SO(n).
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Let us introduce a complete orthonormal basis set {|£, M)} in H where the

(n—2)-tuple M :=(m,_,,m,_s3,...,m,, m;) enumerates these basis states. The
m;’s fulfill the following inequality relations [7, 8]

22 my 2 |my mEZ meNy i=2,...,n-2.

™

The dimension of the space H? and hence also of the representation D¢ is

=(2£+n-2)(‘;'(|:"—:2§!)!. | ®

The matrix elements of the representation D’ in the above basis read
Disa(9) = (£, M|D (g)}e, M"). (9)

Explicitly, the particular matrix elements D%,,(g), the zero stands for the (n — 2)-
tuple (0, ...,0), are given by a product of Gegenbauer polynomials CY(z) [7]

Diro(9) = AR H {C,':::fl’“/:“(ms @k +D)) gip™> (I>(k+1)} cimi @ (10)
where
1 n-2 22mk+k"'2(m —m )!
A(n) — k+1 k) oy P\[2 /2
[ ] T(n/2) } {ﬁr(mk+1+mk+k)( Myp1 + B)I(my + k/2)

an

is the correct normalization factor with respect to the normalized Haar measure dg
on SO(n)

Oy
/ dg Dhso(9)Dhi(g) = t; JYgveR (12)
SO(n)
In the above §rp stands for the product 6, ... -6, ... The angles &) in

(10) are the polar coordinates of the unit vector e := (el,...,e™) which is the image
of the north pole a := (0, ...,0,1) under the rotation e = g(*~Va

e! = sin ®(*=gin ®("-2) ,  sin oV

e? = sin ®(*~Vsin ®*-2) _,  cos oV
(13)

e® = cos o1

with the conditions 0 € @) g 27 and 0 < ®) ¢ = for ¢ # 1. Actually, the
polar coordinates can be identified with the Euler angles (2) of the rotation matrix
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gD = g (6771 .. g,_1(8°2]), ie. 8 = 67~ Note that a is invariant under
rotations g(®) with &k < n — 1.

The matrix elements D%,,(g) are invariant under right translations of the
subgroup SO(n — 1) formed by the set of rotations about the north pole a

Diso(gh) = Digy(g)  Vh €SO(n - 1). (14)

In other words, SO(n ~1) is the stability group of a and contains all rotation matrices
of the type g{*) with k < n—2. Matrix elements of the form (14) are called spherical
functions and are related to the hyperspherical harmonics in n dimensions by

Yine(e) = ,S—‘,’f‘_—l-l-vi,t,(g). (15)

Here |S™~!| := 2x"/2/T'(n/2) denotes the volume of the unit sphere S™~1. Note
that by construction |e) = D(g)|a). The hyperspherical harmonics are the g-
representation of the basis states |£, M), ie. Y, (e) := (e|€, M). With the relation
(alé, M) = \/d,[|S™| 6540 One obtains (15). The hyperspherical harmonics form a
complete set on S™~! and are orthonormal with respect to the associated Lebesgue
measure

[ a6 Y () ¥ne) = bburn (16)
Sn-~l
The measure reads in terms of the polar coordinates (13)
d*~le =sin" "2 @D .. 5in 8@ dap(»-D...qpM, )

For M = 0 the spherical functions (14) reduce to the so-called zonal spherical
functions

Dh(9) = gy sy 5V (c0s0) 18)

where @ := ®("~1 is the polar angle of the unit vector e = ga. Or, more generally,
if g maps z into =’ (cf equation (1)) the angle @ is given by cos 8 = x - ' /|z||2'|.

3. Explicit results for particular 3;.symbols

In this section we will present explicit expressions for particular 3;-symbols for the
most degenerate representations of SO(n). It has been shown by Girardi et al [9] that
the Kronecker product of two class-one representations decomposes in a Clebsch—
Gordan series as follows (¢; > £,)

L 1
[41,0,...,01®[£,0,...,00 =D Pt + &, - 21 - &, k,0,...,0]. (19)
=0 k=0
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We are only interested in the coefficients for the most degenerate representations on
the right-hand side, i.e. those with k = 0. Let us define the corresponding 3;-symbols
by an integral as follows

L £ ¢
(i 0 2) (5 % 8)= [ wntutomiu@ntue. @
S0(n)
Note that the class-one representations are multiplicity-free. In (20) we have also
utilized the fact that the 3;’s can chosen to be real without loss of generality.
We will first consider the particular case where M, = 0 for all 1 = 1,2,3. In this
case (20) reduces to a known integral over three Gegenbauer polynomials

6 6 \° [ D(n-2)¢! I'(n/2)
(5 %% “E[r(‘e.~+n—-2)]ﬁr((n-1)/z)

x f a8 G~ (cos 0) Cir P (c0s 9)C P2 (cos 0) sin™ 2 9. (21)
0

This integral vanishes unless [7] (also see [10] where the special case n = 3 is treated)

2J:=8,+ 46,4 ¢ with J =0,1,2,...
1 2 3 3 &y (22)
E;‘:ej+£k’£j+ek"1="'=|ej—£k|'

Note that these conditions are the same as those known for SO(3). The result of the
integration can be given in closed formt

(el A es)"ﬂ_ T(J+n-2)
0 0 0/ ~ I(n/2)T(n-2)I(J + n/2)
T [+ (n=2)2T(J - £+ (n—-2)/2
<TH{*HE Seri *

i=1

Equation (23) only determines the absolute value for the 3j-symbols. The relative
signs have to be fixed by a phase convention. We adopted the convention

(5 % §)=cor|(5 4 %) e

which is the same as for n = 3 [6]. In table 1 we list some explicit 3;-symbols of the
type (24) for the groups SO(5), SO(6) and SO(7). Note that the 3;-symbol (24) is
invariant under any permutation of £, £,, £,. Because of this invariance we present in

t It has been mentioned by Vilenkin [7] that the integral appearing in (21) is related to special coupling
coefficients. However, no explicit expressions for 3j-symbols have been given.
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Table 1. The square of the 3j-symbol (23) for the groups SO(5), SO(6) and SO(7).
Here, S denotes the sign for the coupling coefficients according to the phase convention

(24).
6, & £ S8 SO(%) SG(6) SO(7)
0 0 ] + 1 1
1 1 1
1 1 G - H 73 5
2 2
A 73 73
1 1 1
¢ 2 0+ 5 723 ¥
1 2 2.5
3 2 1 _ 1 3 1
737 7T ¥1
i 1 1
3 3 0 - 533 X T
3 7 25
3 3 2 + T3 sy LEETRE]
4 ) 2 + 5 3 2.7
2 1 22
4 3 1 + 3511 2.3.52 7.11-13
3 3 2
4 3 3 - 751113 L) 71113
1 1 1
4 4 0 +  sn 757 PRAL]
4 4 ) _ 27 pal 2
35113 3PP 71113
2 3 5
4 4 4 + 35313 o I3 07
5 3 2 _ 5 1 2
331113 2527 TN ES
5 4 1 - 1 1 S -
11.13 2.3.72 2-3-7-13
2 3t 2.5%
5 4 3 + 351113 PR ENSTREN
5 5 0 - e 1 L
73 pN7 3357
22 3 $3
5 5 2 + T3 B AIB1
2.5 3 53
5 5 4 ~ 711-13.17 773 2301311719

table 1 only those where ¢; > £, > €;. Vanishing 3j-symbols have not been included
in the table,

For particular combinations of £,,£,,¢; it is also possible to make extensive
simplifications for expression (23). Here we mention two examples

e 2 0\ _ (-1 p
000/ J4
(e ¢ 25) _T(£4n/2) [ (20)! 1z

00 0 d,e! (2 + n/2)T(n/2)
which indeed coincide for n = 3 with the standard 3j-symbols of Wigner [6]. These
two examples are of particular interest in the high-temperature expansion for the
classical n-vector model {11]. They appear as weights of the @-topology, which is the
first non-trivial contribution to the high-temperature series of the partition function,

and have been obtained by Domb [11] only for £ = 1, 2,3 after lengthy calculations.
Another approach for evaluating 3j-symbols is to utilize the equivalent definition

L £ £ £ 12 £ £ £ fa%
Dyro(9)Dipe(9) = ;M: Ay (1&1 M, Ma) (6 0 0 )Dﬁsv(g)*' @9
33
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where the dots indicate the contributions of the terms with k > 1 in (19). Equivalence
with the definition (20) becomes obvious by making use of the orthogonality relation
(12). |

Again let us first consider the particular case for M; = 0, i = 1,2,3. The
recursion relation of Gegenbauer polynomials [12]

(£+ DCEa(x) = 2(£ + v)zCy(2) - (£+ 20 - 1)CY (=)

and their relation to the zonal spherical functions (18) lead to the following recursion
formula

£ _ £4n-=2
Din(9)Din(g) = mpfn Y9) + Y Ar— D (9)- (26)
A comparison with (25) gives
g (1 ¢ e-1\_ ¢ g (1 ¢ e+1\°_ t4n-2
=130 0 O T 24 n-2 4110 0 0 T 24 n-2

Up to now we have only considered 3j-symbols with M = 0. The simplest one
with non-vanishing M’s can be obtained from the orthogonality relation (12) with

Dito(9) = (=)™ DL (g) @7
where
M:=(m,_5,...,my,—m,;) (28)

is the same as M but with the last component having opposite sign. Because of
DY (g) = 1 we find

e ¢ 0 —1)f-m™
(M F 0) —_ g)\/—Téll’éMM" (29)
L4

For n = 3 this reduces indeed to the known result [6]. The evaluation of more
general 3j-symbols will be the subject of section 5.

4. Connection with Clebsch-Gordan coefficients

Before we consider the evaluation of an arbitrary 3;-symbol we would like to mention
some properties for the Clebsch-Gordan coefficients of class-one representations
which are closely related to the 3;-symbols.

We have seen in the above section that the product space H“ @ H® decomposes
into irreducible subspaces as follows

4H44,
H¢1®H12= @ Hl@... (30)
1=t -1,



1656 G Junker

where only those £ values are allowed which fulfill the condition (22). The dots on
the right-hand side stand for the terms with non-zero k in the Clebsch—Gordan series
(19).

As a basis in this product space we can introduce the states

|€,M;; £, M) =€), M) ® |£,, M,). ' €2

As an alternative choice to this product basis we can choose canonical bases {|£, M}}
in each irreducible subspace H¢. Let us call the corresponding basis a coupled basis
and denote the basis states for the first orthogonal sum on the right-hand side of (30)
by

|(£16,)EM) € {|€, M) || £= |, — &}, ..., £ + £} (32)

Note that these states do not form a complete set as the subspaces indicated by dots
in (30) also have to be taken into account.

The Clebsch-Gordan coefficients form an unitary matrix which transforms from
the product basis (31) to the coupled basis containing (32). We are only interested
in the following matrix elements which can be chosen to be real

(€3 M5 £y My |(£,£,)EM) = ((£,£,)EM €, M5 €, M), (33)

The decomposition (30) also implies the following relation for the representation
matrices

DY o(@)Ds(9) = O (€ My; €, M| (£,2,) 0, M;3){(£,£,)130/€,0; £,0) Dy o(9)++ -
139M3

(34
This may be compared with (25) leading to the identification

—lotm £ £ £
R O VA (I B A D)

where again we have adopted a phase convention which for n = 3 is that used in
standard tables [6]. Here m, is the last component of the tuple M.

5. Evaluation of arbitrary 3;-symbols through isoscalars

According to Racah’s factorization lemma [13] the Clebsch-Gordan coefficients (CGs)
of a group G may be expressed in terms of the CGs of a subgroup H of G. This lemma
essentially states that the CGs of G are (ignoring possible multiplicities) proportional
to the ©Gs of its subgroup H. The constant of proportionality is called the isocalar
factor. A proof of this lemma for the group chains

SU(n)>SU(n-1)D>.--2>8U(2)
SO(n) D8O(n—-1) > --- D SO(3)
Sp(2n) D Sp(2n —-2) D --- D Sp(2)
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has been given by Klimyk [14].

Here we will utilize Racah’s lemma for the calculation of the 3;j-symbols for the
most degenerate representation of SO(n) from that of SO(n ~ 1). We will use
subscripts or superscripts (n) and (n — 1) for any expression which is associated
with the group SO(n) and SO(n — 1), respectively. The associated isoscalars can be
defined by

(el 2, es) (el £, £3)
0 0 0/, \M M, M/,

2
= [El £2 £3] (Al AZ ‘\3) (Al AZ )\3) . (36)
Mod Mo \0 0 o) AN N, N

In the above we assume n > 4 as for SO(3) the 3j-symbols are well known.
Furthermore, the M, stand, as before, for the (n —2)-tuples M; = (mi _,,...,m})
enumerating the baS1s states for the SO(n) representanons 'I‘he representations for
the subgroup SO(n —1) are labelled by A; := m! _, and for enumeration of the basis
we introduced (n — 3)-tuples N, := (m _30---,mi), ie. M; = (X;,N,). As the
3j-symbols for M = N = 0 are already known explicitly, we may obtain the peneral
37-symbol of SO(n ) through (36) from that of SO(3) by induction. However, we still
need an explicit expression for the isoscalars. For this we express the left-hand side
of (36) in terms of the integral (cf equation (20))

/ a9 DA (YD ()DL g)
80(n)

I'(n/2 e n n
= 2(,,,1;//2) d*le D%u)(g)ﬂﬁzu)(g)l’f\}%)(g) (37)

on—1

where we have made use of the invariance (14) of spherical functions. Now using

the explicit form (10) we can rewrite D%{7(g) in terms of D2 (“'1)(h) where
g= hgn—l(e)

(n) ’ (n=-1)
£ n A d At (n=-2)/2 Af{n-1
(M (g) = A(‘" M 25") CoH D% (cos 9)sin* 6 DAV (). (38)

The normalization factors AE’;} and A(” D are given in (11). Similarly, we may write
for the measure

F(n/2) o1 _ I'(n/2) a2, L((n-1)/2) . _
yeat le_ﬁr((n__l)/z)dﬂsn 29——*-—-..%(” 57— d" e (39)

Inserting these expressions in (36), the isoscalars can be given by an integral over
three Gegenbauer polynomials

[el ¢, 23]2 __I'® H
A My T VER(ED)

11

A, [ D

A n-2)/2
A(n 1) d) ]/de C‘ll+( / (cos 8)
A AN 4

X Cjz’f,f: 22 cos 6) C'):’_'"JE:‘ D12 cos §) sintitirtrstn=2 g (40)
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Unfortunately, this integral is only known in closed form for A\; = A, = A; = 0
where it reduces to (21), ie.
_ (el 4 es>2
) 0 0 0/,

4 4 6]
¢ 0 0]

However, for non-zero A’s we can express the isoscalar as a triple sum.

Let us consider the integral

L

fde sin? @ C'(cos 6) Cpi(cos 6) Cp3(cos 8). (41)
0
For its calculation we express the Gegenbauer polynomials as a series in cos @ [12]
[»/2]
v — 1 ( 1)# P(p + L p‘) P—2n p=2u
C,(cos8) = (o) ; (p — 21 2 cos 0

where [} stands for the integer part of z. Or with the relation 2P~%* /T'(p—2u+1) =
Va [T((p+ 1)/2- p)T((p+2)/2- )]

, N (—1)*T(p+ v — p) ™
Cpleost) = £ )Zr(<p+1)/2—u)r((p+z)/z—u) cos”" 0. “2)

With this, the above integral (41) can be written as
3

VT (=D* T(p; + v; — p;)
H {; L(y) T(p; + 1) F(p‘z¢1 - 1;) F(%ﬂ - .Uf)}

i=1

L

X /d@ sin? @ [COS 9]P|+pz+m—2(m+#z+m) . (43)
0

Note that the ranges for the sums are now implicitly defined by the Gamma functions
in the denominator. The remaining integral may be performed and leads to a beta
function B(x,y)

*

for p odd

0
dé sin? @ cos? 6 =
J { B(3(g+1),3(p+ 1) for p even.

Note that (41) vanishes unless p, + p, + p; is an even integer. For the isoscalar (40)

this means that Y">_,(£; — A;) has to be an even integer.
Inserting everything into (40) the isoscalar factor can be written as a triple sum

6 & 4] _ T(n/2)m
5 % Rl e, S ke At )

B2 13

fi{ 2k [27
X 3 1
n—1
i=1 A(A N.) d?:)

(=D* I - u; + 25%) (a4)
T (A + 252) D(p, + DT (A=t — p)) T (B=3iE2 —p)

X
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where 2J := £, + £, + £; and 2A := A, + XA, + A;. This expression is now in a
suitable form for numerical evaluation of isoscalars and via (36) also for 3j-symbols.

More general results, including also the representations with £ > 0 in (19),
are given by AliSauskas [5,6]. Let us point out the interesting observation of
Alifauskas [6] that isoscalars of SO(n) are related to coupling coefficients of SO(3).
An explanation of this might go as follows. The present derivation is based on
the polar coordinate parameterization (13). However, one could also choose, for
example, a biharmonic coordinate system where the matrix elements (10) become
products of Wigner polynomials, i.c. matrix elements of SO(3) matrices [8]. The latter
parameterization seems to be more suitable to shed some light on the observation by
AliSauskas mentioned before.

6. Definition and representations of 63- and 9;-symbols

In this section we briefly present various representations for 65- and 9j-symbols.
These coupling coefficients show up, for example, in the higher-order terms of a
high-temperature expansion for n-vector models [1,11]. The 6j-symbol appears in
the o-graph which is a 3-loop contribution and the 9j-symbol comes with the A-
graph, a 4-loop contribution to the partition function.

The group integral appearing for the o-graph may be used as a definition for the
67-symbol as it is a generalization for the integral representation of the 6j-symbol
for SO(3)

j dg,dg,dg; Dih(91)De(92)De(93) D95  93) D& (97 910Dl (9772 92)
S50(n) S0(n) SO(n)

=" (_1)£4+£s+35 ‘el Eg £3 21 £5 £6 £4 EZ fﬁ
' 0 0 0/%\0 0 o/\0o 0 O
b Ly 6\ (& £, £
x(o 0 0){@ 6 £ [ (45)

From this definition one obtains with (27) and (20) the summation formula
6L 6 Y[4 6 4
0 0 O £, £ ¥

=Z(_1)£4+£s+ls+m4+ms+ms 6 & L N[ 4 & K
7 0 M; M, M, 0 M,

£3 e4 ES
x (0 M, *M's) ' (46)

Here and below m; stands for the last component of the tuple M; =
(m},_5y...,m}), ie. m; := mj. For £ = 0 follows M, = 0 and we find, for
example

€ £ £ _ (_._1)ll+lz+ls
{ 0 £ £6} - tgdt 6525565356' (47)

3
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More explicit results on 65-symbols of SO(n) are given in [15]. Another summation
formula may be obtained from the definition (45) by multiplication with 1 =
Jso(ny 490 and the substitution g; — 99

{El JEZ 33} — Z(_I)E.—(h-m.—) (_el _ez. ﬁ ) ( el fs _£6_ )

6 L £ & 4 A
X (7‘74 M, Mj)\M, M, M,)" (43)

This is indeed a special case of the general definition for 3nj-symbols proposed by
Derome and Sharp [16]} and thus justifies the definition (45).
Similarly, we may define the 95-symbol following [16]

£ £ £
—m [ £ e, £ ¢ £ £
-84 25 £6 = Z(_.l)zi(l.—m-)( 1 2 3 ) ( 4 s 6 )
{‘E’I £y 29} M; M, M, M; M, M; M,
x(fv fs fs)(.ﬁ_n 5 ﬁ)
£ & L ) ( L & 4 )
*\M, )\ ST R 49
(M4 Mg Mg/ \M; Mg M, (49)
The corresponding integral representation is

f dg; ---dgs D (97 96) D297 91) D 97  94) D 95 L 95)DE (95 0s)
SO(n)  $O(n)

x Dog(05 '94)D5 (95 9:)DE (95 92) PG (95 95)
(b & G\ (L & L\ (4 & &
=10 o0 o/lo o0 o/lo o0 o

4 4 ¢

6 & E\[t & e\ [t & &) |0 & b
"(0 0 0)(0 0 0/lo o o) g s b €0

7 b 4

and is precisely the integral appearing in the A-graph of a high-temperature expansion
of n-vector models.

7. Closing remarks

In this paper we have presented explicit expressions for 3;j-symbols of the most
degenerate representations of SO(n). The closed-form expression given in (23) is
of particular interest in the calculation of high-temperature properties of n-vector
models. They are related to the high-temperature-expansion coefficients defined by
Domb [11]

2
] £, ¢, £
0213)213 = dll dlzdls ( 01 02 8) (51)
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and thus an explicit expression for arbitrary ¢, ¢,, £, has been found. Similarly, the
higher-order coefficients

2 2
(8 — £, £, £ £, £, ¢
clll)zlsldsls = d‘lt dlzdls dl4 dls ( (]1 02 QS) ( 5 (;‘ 05 615!5
(52)

2 2
2 &, ¢ £ €, £
cg?:c)zljt‘tj = dzl dtzdtsdf‘dts (OI 02 05) (03 04 (]s)

are now also available in closed form. Further results will be given elsewhere [17).

It has been mentioned that the motivation to the present study is due to
our interest in explicit high-temperature expansions of statistical models with
SO(n) symmetry. For this reason we have been working in the polar coordinate
parameterization (13) which is most suitable for that aim. However, an analysis
similar to the present work can be done using other coordinate systems which will
lead to other representations for coupling coefficients of SO(n). In particular, the
biharmonic coordinate system used by Barut and Raczka [8] may provide additional
insight to the relation between coupling coefficients of SO(n) and those of SO(3)
[6, 15].
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